A tech kitchen for kids

Stem education is imperative for 21st-century students. A tech entrepreneur combines learning, food, and fun–taking her creation on the road to share with cities nation-wide.


STEM education is an imperative for 21st century students.

Up next, a tech entrepreneur combines learning, food, and fun, taking her creation on the road to share with cities nationwide.

Here's the story.

A special restaurant is popping up in cities across the country.

Sue's Tech Kitchen teaches kids science, technology, engineering, and math through a universally loved medium -- snacks.

The unique space is the brainchild of Randi Zuckerberg, head of Zuckerberg Media and creator of the kids TV show 'Dot.', which features a young, tech-savvy girl who loves problem-solving.

I have a real passion for creating girl characters that help to inspire.

And I kept dreaming up this girl, Sue, who loves cooking and loves science.

She's always thinking of these zany ways to combine the two -- you know, blowing up stuff in her kitchen and inventing things.

And I thought, 'Well, Sue wouldn't have a TV show.

She'd have a restaurant.

She would invite her friends to come to her kitchen and see how she's 3-D-printing chocolate and putting different ingredients together in wild ways.'

And, so, we decided, 'All right, we're just gonna open her restaurant,' and here we are.

Zuckerberg hasn't put a face to her character because she doesn't want to define what a tech-kitchen entrepreneur looks like.

But she is adamant that a female name be on the marquee.

Because I think, in today's society, you walk into -- You know, it's like Mickey Mouse, Willy Wonka, Chuck E. Cheese.

Anything that's fun and innovative have boys's names on the marquee.

I want boys and girls alike to have an amazing time in this space, and they will, but I think it does something to the psychology of little girls to know, 'Okay, I'm going to a high-tech space, and there's a girl's name on it.'

And Sue's Tech Kitchen is high-tech.

There are virtual-reality and 4-D video stations, Piper Craft kits that teach kids engineering through the game 'Minecraft,' and Cubetto, a wooden robot from the toy company Primo that teaches the basics of coding.

Of course, it wouldn't be a tech kitchen without food.

Kids can do edible science experiments, make healthy cookies, and even 3-D-print pancakes and s'mores.

As of now, Sue's Tech Kitchen won't be a permanent fixture in any one city.

The restaurant is a pop-up experience on a nationwide tour.

Zuckerberg sees a strong STEM education as key for the job seekers of the future, and she fears that millions of kids across the country without access to a solid STEM education or even reliable Wi-Fi could be left behind.

So, I've always thought, 'Okay, how do we introduce more girls, more children in rural areas of the country to tech in a way that feels approachable and accessible and fun'? Because if you can't kind of force kids to go to the tech, sometimes, you have to bring it to them.

Zuckerberg is a parent herself, so she knows what technology children find cool.

And she also knows why the word 'technology' sometimes makes parents cringe.

Parents are really divided on the role of tech in their own household.

They know that they need to introduce tech to their kids, but then they're worried about too much screen time.

So one of my big visions for this space is -- I wanted to show that there are thousands of ways to introduce children to technology that never once involves a screen.

Zuckerberg says Sue's Tech Kitchen will continue to grow and change as it tours the country.

Already, more activity stations have been introduced, and evening hours have been added so adults can get in on the fun.

We had, you know, young adults come on date nights and things, and we'd talk to them and say, 'Okay, why are you here?

We built this as a family experience.'

And they would say, 'Well, I really want to learn about tech, too, and this seemed like a really approachable, fun way to learn about it.'

So we're opening up on Friday nights for 21-plus, so you can come, you know, have a cocktail, enjoy the space.

And do something you can't really do at a fancy restaurant -- play with your food.

Sue's Tech Kitchen will set up shop in 10 cities over the course of 2018.

And, so, what we're gonna have right here is the launch-vehicle stage adapter, which is the initial adapter above the launch vehicle.

And that also holds the upper stage that is nested inside of there so when we get into orbit, it will separate and come out of the launch-vehicle stage adapter and, again, put the crew capsule on its orbit.

Now, we're very proud of that adapter, along with the Orion stage adapter.

We built both of those adapters here at Marshall Space Flight Center, using some friction-stir-welding capability that we have here at the center.

So, the panels were made out in California.

They're a lightweight aluminum alloy.

And then they're shipped here to Marshall Space Flight Center.

And then we weld eight panels on the aft cone, eight panels on the forward cone, and then we weld the two cones together.

And then we go through an analysis phase, but then we want to make sure that analysis was accurate, so that's why we perform these structural-test articles -- so we can actually apply loads greater than what we expect to see during the mission to prove that we have sufficient margin to assure mission success.

We've been doing instrumentation for about three months on this launch launch-vehicle stage adapter, and now we're getting ready to lift it and put it on the K-Mag and transport it to the test stand.

So, once we get to the test area, we will have to de-mate it from the K-Mag.

And then we will begin the process of attaching the 300-ton mobile crane and lifting it and putting it into 4699 to test that.

And then we will apply all the loads that are required of us and collect all the data.

Then we'll turn that data over to all the stress analysis, which is NASA, Teledyne Brown Engineering, United Launch Alliance with Boeing.

So there's actually several test requesters for this test that are responsible for different pieces of the test that will collect the data and then go and do all their analysis to compare it to their models.

A San Antonio, Texas, company has developed the world's first holographic toy to allow you to hold a hologram in your hand, changing the way we interact with the virtual world.

Here's a look.

Merge Cube is the world's first holographic object, and what we're doing is merging the physical and the digital.

As well as with augmented reality, we're merging kind of the real and the unreal, if you will.

We're taking the real-world view and imposing digital imagery on top of that.

So, the Merge Cube is an interactive toy that we've developed that allows you to hold holograms in your hand.

So, you hold it in your hand, and when you're wearing a Merge headset or any kind of V.R.

headset and you look at it, it actually comes to life.

It's 'Star Wars' technology in a modern-day product that we're releasing this summer.

For a long time, we've had these holograms that you can look at and sort of, kind of walk around or sort of see from a distance, but this is the first product that you're gonna actually be able to touch and hold and feel.

And so that adds sort of this level of interaction that makes it really compelling and really interesting.

So, virtual reality is kind of what you see a lot of people doing.

When they put on the headset, they sort of enter a completely virtual world.

So they can look around the world, they can interact with the world in different ways, but it completely seals them off from the real world.

What augmented reality is -- or what people are calling it sort of -- is the idea that you see the real world and then you overlay sort of virtual components on top of the real world.

So, for example, if I was gonna build some sort of augmented-reality interaction with you here, I would see you, but then maybe I would see a heads-up display next to your head that says your name, your birthday, where you're from, the things you like, the things you don't.

So, that's kind of augmented reality, this idea of the real world but with information added on top.

All right, Jeremy, what are we looking at here?

So, this is the Merge Cube, and this is how it works.

What we have here is -- we have the physical cube behind the camera.


And then we're showing you here, on a tablet, the digital layer that's added on top of the cube.

So, in this case, we have kind of a fantasy castle, and when you tap on it, it shoots out fireworks.

And it's pretty cool.

But you can actually grab it, and you see my hand here actually assisting and turning it, like it's a hologram right here in the palm of my hand, so it's pretty cool.

So, you're merging, as we talked about, the virtual world, which is the world of the cube, merged with the real world, which is you and your hand and the room we're in right now.

I can take the human skull and superimpose it on top of this cube, and it does a couple of interesting things.

First, I can connect with it and I can control it and look at it, you know, up and down from every different possible angle, number one, but also, number two, what's been really gratifying is that although we have you holding a cube in your hand, you actually have your brain fooled into feeling a skull in your hand, in the example of the anatomy viewer.

I think it's gonna be used in classrooms to do things like anatomy viewers, viewing the periodic table of the elements, viewing astronomical bodies, for example.

I think it will be used a lot in entertainment and gaming.

But some of the other things that we've been approached about by others is architects and engineers using it as a visualization tool, where they can take something simple out into the field and show their client or perspective client.

Hey, here's the building or the car or whatever it is that I want to build for you, or here's a progress report, and they can actually look at it, again, you know, from every possible angle, manipulate it, and really kind of have fun, you know, have fun connecting with it, but also learn a lot.

One thing that we've found with virtual reality, augmented reality, in general, is that it's just that extra dimension adds emotions in a way that's far more powerful than anything that has ever existed before.

And so one of the things that we really see the cube being used for is connecting with something emotionally, not just, you know, something I'm kind of visualizing.

And we've actually seen people experience that when we put, you know, a hologram in their hand.

And, sometimes, it's something fun, and sometimes, as you've seen with the anatomy viewer, you know, they really kind of are in awe and really kind of profoundly connect with it.

It's like, 'Oh, this is what my skull looks like.

Here are the different parts.'

And it's something that you almost kind of see almost a little bit of a tear, you know, when they walk away.

It's like, 'You know, look how beautiful this thing is.

[ Laughs ] That is awesome.

And that wraps it up for this time.

For more on science, technology, and innovation, visit our website, check us out on Facebook and Instagram, and join the conversation on Twitter.

You can also subscribe to our YouTube channel.

Until next time, I'm Hari Sreenivasan.

Thanks for watching.